
Advanced Javascript
Webworks – A Workshop Series in Web Design (Session 5)

Table of Contents:
1. Browser and Object detection
2. Cookies and Stylesheets

Browser and Object Detection

1. Introduction

There are many browsers out in the great unknown of the internet today. Internet
Explorer, Netscape, Mozilla Firefox, and Opera are just a few of them, and even
they have internal version numbers as well. As you can imagine, each has
slightly different, or even vastly different, ways of interpreting your JavaScript or
HTML code. Some HTML tags are supported in some but not in others. Not all
browsers support the same version of JavaScript. Some functions may be
support on one browser, but not on the next. Displayed text or boxes could even
look misaligned. How can you limit the number of bugs on your page?

2. Browser Detection vs Object Detection
Browser detection sniffs out the browser of the entire page, while object detection
is a more dynamic way of checking the validity of each function as it gets called.
Browser detection leverages the navigator object that is available to all
JavaScript code, and while it had its glory days, object detection is now the more
popular way to sniff out incompatibility. First, we’ll go over browser detection.

3. Browser Detection

Browser detection was widely popular in the past. JavaScript gets a “navigator”
object, from which browser data can be collected.

Useful properties:

Property Description
Navigator.appName Name of the browser (for ex, Microsoft Internet Explorer
Navigator.appVersion Version of the browser (for ex, 6.0)
Navigator.userAgent User agent header (for ex, Mozilla/4.0 (compatible; MSIE

5.5; Windows 98; Hotbar 3.0))

 For example,
<script language="JavaScript"
type="text/JavaScript">
if(navigator.appName == "Netscape"){
 window.location = "http://www.netscape.com"
}
if(navigator.appName == "Microsoft Internet Explorer"){
 window.location = "http://www.msn.com"
}
window.location == "meh.html"
</script>

Webworks: Advanced Javascript Page 2 of 9

So, we could use this to set up many variables that detect the browser type and
version, and then use this to either detect which version of our code to use, or to
phase out parts of our code that might not work under other browsers.

4. Object Detection

So what’s the problem with using browser detection? Well, as you can see, it’s
pretty tedious. Many browsers hide their names or have different formats for
displaying version numbers. You can to check for every browser, and since there
are so many different kinds, it’s almost impossible to preplan for each. Besides,
who wants to do that? Here’s where object detection comes in. It actually figures
out whether the visiting browser supports the object that is going to be used
before it uses it.

Let’s look at the classic rollover example. Rollovers use the document.images
object to get the images on a page. However, this object is only supported by
Netscape 3+ and IE 4+.

Here’s how to do it:

function imgOn(imgName) {
 if (document.images) {

 document[imgName].src = eval(imgName + "ON").src;
 }
}

Notice that I called the object, document.images. If it exists, it will return true and
execute the following code. Notice that if it does not exist, the code will continue
as if nothing had happened.

Cookies – Quick Overview

What are They?

A very small text file placed on your hard drive by a web page server when you access a
site on that server. It serves as an identification the next time you access web pages on
that server so as to extend the capabilities of web-
based client/server applications. It is uniquely yours
and can only be read by the server that gave it to you.

What are They For?
To let the server know that you have returned to a
page/site you have previously visited. This can be
useful in the following situations:

• Suppose you are filling a form and then
accidentally close the window. A cookie set on
your machine lets the server remember fields
already filled-out.

• Allows you to customize what you want to see

Webworks: Advanced Javascript Page 3 of 9

when you visit a portal like myway.com
Monitors whic• h advertisements were shown to you and how often each was

ypes of Cookies

s – expire after your session on that site
d delete cookies

ypes of Values a Cookie can Pass

f the cookie - how long the cookie is active in your

• he URL path the cookie us valid in. Web

• kie accessible to pages on

• the cookie can only be used on a

et’s Bake some Cookies

tage 1 – Cascading Style-Sheets

s you might have observed, although the index pages all have the same text, their

uestions:
s a style-sheet?

ts equally appealing?
orite one most appealing?

tage 2 – Creating the Style-Sheets
low each one of us to be able select

shown.

T
There are two types:

• Session cookie
• Persistent cookies – remain until you clear your cache an

T
• The name of the cookie.
• The value of the cookie.
• The expiration date o

browser.
The path of the cookie is valid for - t
pages outside of that path cannot use the cookie.
The domain the cookie is valid for - makes the coo
any of the servers on a multi-server domain.
The need for a secure connection – states if
secure server connection, such as on a site using SSL.

L

S

Task 1
CSS-Zen Garden <http://www.csszengarden.com/>

t of the pages
• Visit
• Click on any of the links to the left and observe the conten

A
formatting and layouts differ radically. Each uses a Cascading Style-Sheet (CSS).

Q

• What i
• Do you find all the layou
• What is the chance that everyone finds your fav

S
Lets now apply the knowledge about cookies to al
how they want their site to be displayed. But first we need to have a style-sheet created
for each new look we want to make available.

Webworks: Advanced Javascript Page 4 of 9

In real life you would do this when you start designing your site. If you want to learn
more about style-sheets, use Google, visit WC3.org (http://www.w3.org/Style/CSS/) or
come to our Spring CSS tutorial.

For now:

Task 2
• Download and unzip cookies.zip to the desktop
• Open the index file for editing in Macromedia DreamWeaver.

Stage 3 – Attaching the Style-Sheets to the Page

The link element is used to declare the style-sheet. There are three different
relationships external style sheets can have with their parent document: persistent,
preferred, and alternate.

Persistent Sheets
Always on. To make a style sheet persistent, the rel attribute is set to
“stylesheet” and NO title attribute is set.

To make the style sheet “style1.css” persistent, add this code in the head:

<link rel="stylesheet" type="text/css" href="style1.css" />

Preferred Sheets

These style sheets are enabled by default. They can, however, be disabled them if an
alternate style sheet is selected.

To make a style sheet preferred, the rel attribute is set to “stylesheet” and the style
sheet is given a title attribute. For instance, this code makes sheet “style2.css”
preferred.

<link rel="stylesheet" type="text/css" href="style2.css"
title="preferred"/>

Note: It is preferred not because its title is “preferred” but because it has a title.

Style sheets having identical title attributes are form a group. Grouped sheets can be
enabled and disabled in one go. If more than one group of preferred style sheets are
declared, the first group takes precedence.

Alternate Sheets

These style sheets can be selected by the visitor as an alternatives to the author’s
preferred style sheet. This allows the visitor to personalize a site and choose his or her
favorite scheme. They can also be used for accessibility.

Webworks: Advanced Javascript Page 5 of 9

To specify an alternate style sheet, the rel attribute is set to “alternate
stylesheet” and the style sheet is named with a title attribute. As with preferred
sheets, these style sheets can also be grouped together by giving them identical title
attributes. To make style-sheet “style3.css” an alternate sheet, we place this code in the
head of the document.

<link rel="alternate stylesheet" type="text/css"
href="style2.css" title="alternate" />

Task 3
• There are three style-sheets in the cookie folder you created from the zip-

file you downloaded.
• Add sheets “style1.css”, “style2.css” and “style3.css” to the

head of your “index.html“ file
• Make sheet “style1.css” the persistent sheet.
• Make sheet “style2.css” the preferred sheet entitled “sassy”
• Make sheet “style3.css” the alternate sheet entitled “boring”

Swapping Styles

Stage 4 – Programmatically Differentiating Sheets

Ideally, users should be able to select the style-sheet of their choice from the available
list. Sadly, this is not the case so we have to use JavaScript to allow users to make that
choice and remember it for them using a cookie.

The Script

First we need the script to be able to differentiate between the three different types of
style-sheet. This is relatively easy to do, as we only need to check two of the attributes
of each link element.

Is it a link to a style sheet?

HTMLLinkElement.getAttribute("rel").indexOf("style") != -1

Is there a title attribute?

HTMLListElement.getAttribute("title")

Does the rel attribute contain the keyword "alternate"?

 HTMLLinkElement.getAttribute("rel").indexOf("alt") != -1

Webworks: Advanced Javascript Page 6 of 9

Using these three checks we can check every link element in the document, disabling all
preferred and alternate style sheets that we don’t want active, and enabling all preferred
and alternate style sheets that we do want active.

Note: Only preferred and alternate style sheet link elements have a title attribute.

The function to do this looks like this:

function setActiveStyleSheet(title) {
 var i, a, tagNames;
 tagNames = document.getElementsByTagName("link");
 for(i=0; i < tagNames.length; i++) {
 a = tagNames[i];
 if(a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("title")) {
 a.disabled = true;
 if(a.getAttribute("title") == title)
 a.disabled = false;
 }
 }
}

Stage 5 - Baking Cookies

Now we can change the style sheet. However, the preference only persists on the
current page. To remember the preference, we use cookies.

Cookie processing involves storing the preference to the hard-drive in the form of a
cookie and reading it another time.

The following snippet creates a cookie.

function createCookie(name,value,days) {
 if (days) {
 var date = new Date();
 date.setTime(date.getTime()+(days*24*60*60*1000));
 var expires = "; expires="+date.toGMTString();
 }
 else expires = "";
 document.cookie = name+"="+value+expires+"; path=/";
}

Webworks: Advanced Javascript Page 7 of 9

To read the cookie we use this snippet

function readCookie(name) {
 var nameEQ = name + "=";
 var ca = document.cookie.split(';');
 for(var i=0;i < ca.length;i++) {
 var c = ca[i];
 while (c.charAt(0)==' ') c = c.substring(1,c.length);

 if (c.indexOf(nameEQ) == 0)
 return c.substring(nameEQ.length,c.length);

 }
 return null;
}

Stage 6 - Getting the Current Active Style-sheet

To return the current style sheet we locate an active preferred or alternate style sheet
and check its title. To do this we look at all link elements on the page to decide if each is
a style sheets. If it is, we check if has a title. This tells us that the style sheet is either
preferred or alternative.

Finally, we check if the style sheet is active. If all three checks return true, we have the
current style sheet and we can return the title. If not, then we return null.

The function looks like this:

function getActiveStyleSheet() {
 var i, a, tagNames;
 tagNames = document.getElementsByTagName("link");
 for(i=0; i < tagNames.length; i++) {
 a = tagNames[i];

 if(a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("title")
 && !a.disabled) return a.getAttribute("title");
 }
 return null;
}

Webworks: Advanced Javascript Page 8 of 9

Stage 5 - Using the Cookies

To use these cookie functions, we need to add onload() and onUnload() event listener
handles to the window.

OnLoad()

When document is loaded, we need to tell the browser which style-sheet (our preferred
style-sheet) we want to use as our active style-sheet. The function
setActiveStyleSheet() (see page4) does this.

To find out which style sheet is the preferred style sheet, we need another function -
getActiveStyleSheet() which may look like this:

function getPreferredStyleSheet() {
 var i, a, tagNames;
 tagNames = document.getElementsByTagName("link");
 for(i=0; i < tagNames.length; i++) {
 a = tagNames[i];
 if(a.getAttribute("rel").indexOf("style") != -1
 && a.getAttribute("rel").indexOf("alt") == -1
 && a.getAttribute("title")
) return a.getAttribute("title");
 }
 return null;
}

In the onload() function, we first set a title variable. This either holds the value of the
previous style sheet that was retrieved from the cookie, or if there isn’t one, the title of
the author’s preferred style sheet. To keep things logical, let’s call the cookie “style.”

Next we call up the setActiveStyleSheet() function passing the title variable as the
title. Our onload function looks something like this:

window.onload = function(e) {
 var cookie = readCookie("style");
 var title = cookie ? cookie : getPreferredStyleSheet();
 setActiveStyleSheet(title);
}

Webworks: Advanced Javascript Page 9 of 9

onUnload()

When we leave the page, we want to remember the style-sheet for another day, so we
save it. We use the onUnload listener message handle to do this. This function gets the
current active style-sheet, and saves it in a cookie:

window.onunload = function(e) {
 var title = getActiveStyleSheet();
 createCookie("style", title, 365);
}

Stage 6 - Integrating it all

We store all these functions in a JavaScript file named styleswitcher.js, and load
the file inside the head of the document, making sure the script file is loaded after all the
style-sheet link elements like this:

<script type="text/JavaScript" src="styleswitcher.js"></script>

To allow visitors to change the active style sheet, we use hyperlinks with a JavaScript
onClick() events. For example, to have the option to switch between two themes with
titles “boring” and “sassy,” we would use the following HTML:

Finally, we attach the script that makes all this work to the html file

<a href="#"

onclick="setActiveStyleSheet('boring');
return false;">
Boring Theme

<a href="#"
onclick="setActiveStyleSheet('sassy');
return false;">
Sassy Theme

Task 4
• Attach the “style-switcher.js” file to the “index.html” file
• Add the hyperlinks that allow the user to switch style sheets

Resources Used
Cookie-Central < http://www.cookiecentral.com/faq/>
Webopedia.Com < http://www.webopedia.com/DidYouKnow/Internet/2002/Cookies.asp>
Adapted from Sowden, Paul. “Alternative Style: Working With Alternate Style Sheets.”
< http://www.alistapart.com/articles/alternate/>

	Advanced Javascript
	Cookies – Quick Overview

